EMBODY(1) Ernvironment Modules EMBODY(1)

NAME
Embody - Environment Modules Build system

SYNOPSIS
JEMBODY][options]

DESCRIPTION
Embody (Ervironment Modules Build) is a software build tool with integrated support for thieoen
ment-modules package. The tool eases and automates the ta#llingland installing software packages
from source or binary distributions, as well as the management of associated modulefiles.

Embody provides a framerk to script the tasks that are customarily describeREADME and INSTALL
files, run these tasks in order or individug#gd capture their output in log files.

The design goal was to reduce routine installation tasks to defiaifables and shell functions for theyk

tasks, thereby providing a self-documenting and unified skeleton for maintaining package installations.
While there is some conceptuatedap with rpm(8), the goal is simplicity and decoupling from rgm’
dependencies and database, which enables coexistenceerafl ailds. Usefulon HPC systems, ne

builds can be deployed centrally to shared file systems and without affecting running jobs.

OPERATION
Embody consists of a librarlibembodyand a user-defined package-specific script na&MBODYby con-
vention. Both are written ibbash(1).

Package placement

With Embody, software is normally deployed into package-specific directories, typically having subdirec-
tories like bin, lib, and man as determined by the packagerative install procedure. This structure will
allow seveal versions and builds to coexist.

The name of the topel directory is generated in a varial$iprefix , which is constructed roughly as:
$PACKAGE_ROOT/$NAME-$VERSION-$BUILD

where the constituent variables are defined by the usEMBODY and by site-defults inlibembody A
modulefilg5) is automatically created and placed in

$MODULE_ROOT/$NAME/$VERSION-$BUILD

If, during modulefile installation, a modulefile from a pri@rsion exists iFMODULE_ROOT/$NAMEA
.versionfile is created if it does not already exist, so as tegntgpremature use of thewduild by users
shells. Thesite administrator can later edit or reveothis .versionfile (see “Modulefile management’
options), preferably after usersvealeen notified of the upgrade.

The user runninEMBODYmust hae write permission itBPACKAGE_ROGCand$MODULE_ROOTWith
a proper setup, such as one employing group permissions, it is often not necessary to run, and in particular
install, as root.

Staging Functions

Package deplgment is done by a series of so-called staging functiobash(1) syntax. Default functions
are pre—defined, and may be re-defined by the user EMB®DYscript. Thepredefined functions detect
a wuple of deplgment styles andxecute the canonical action as described Wwaloder OPTIONS The
recognized styles are, in this order:

* rpmbuild(8) from aspecfile
» Python-style setup.py
» GNU-style configure + make

The functions and their correspondence to options are:

embody-1.0.4 2012-12-13 1

EMBODY(1) Ernvironment Modules EMBODY(1)

Function name Option Notes Provided?
stage_download --download (1) no
stage_zap -2 (2) no
stage_extract -X (1) no
stage_remove -r 3) yes
stage_uninstall -u yes
stage_distclean -d yes
stage_prep -p yes
stage_build -b yes
stage_install -i yes
stage_install_aux -a yes
stage_module -m yes
stage_test -t yes
stage_clean -C (4) yes
embody_stages (5)
embody_wipe -w (5)

(1) Normally runs only once unless --force is given.
(2) Normally runs only as part of stage_extract.

(3) Normally runs only as part of stage_uninstall.
(4) Not run as part of default sequence.

(5) Not a staging function - do not redfine.

Unless aw of the specific options albe ae given to EMBODYto explicitly pick one or more stages, all
staging functions ale except stage clean are run in sequence, as hardcoded in ehebody_stges
sequencing function.

A build-specific directory is created in the package source tree to hold log filesvamnidigdly) a test direc-
tory:

embody-$VERSION-$BUILD/
The output of each individual stage is logged into:

embody-$VERSION-$BUILD/<stagename>.log
and the output of the wholevBODYrun is logged into:

embody-$VERSION-$BUILD/last.log
These files, as indeed the entire source and build directory EN&ODYruns, can be left after theuitd
should a problem arise in production. Calling #ve option, howeer, will remove dl builds’ log dirs.
The EMBODY script

The user creates tfrEBMBODY script to reside in a typicallyersion-specific work directory for a package.
The name can be anything, EMBODYsorts beforeREADMEOr INSTALLand stands out.

The script must do the following:

» set package-related variablé&dAMEVERSION BUILD),

* set variables for modulefile conteMlQDULE_WHAT|SIODULE_HELRtc.),

» load theembodymodule and anmodules that are prerequisite for the current package,
» source theembodylibrary,

» (re-)define zero or more staging functions, and finally,

» run theembody_stges sequencing function, the last and mairsoaitable statement.

embody-1.0.4 2012-12-13 2

EMBODY(1) Ernvironment Modules EMBODY(1)

Most of the script will be “merely'definitions of variables and staging functions.

Variables in the EMBODY script
The following variables are expected to be set irE1iBODYscript:

* Package definition
NAME Package name, without version and build tags. Acceptable characters are letters
(possibly in mixed case), numerals, and dashes ‘Underscore” " is dis-
couraged, and grother “funny” characters are disallowed.

VERSION Package version [optional]. Should consist of numerals, datdnd letters.

BUILD Build tag [optional]; can be arbitrarily long. Acceptable characters ARAME

BUILD_MULTI A multi-line build specification (see MUIL-BUILDS belown). Ignoredwhen
BUILD is set.

SPECFILE name of arrpm(8) specfile. The \ariablesNAME VERSION BUILD, MOD-

ULE_WHATIS and MODULE_HELRre set from contents of the spec filat b
may be @erridden.

* Site defaults
The following are normally predefined in the stébembody file:

PACKAGE_ROOT base directory for packages
MODULE_ROOT base directory for modulefiles, defal8lACKAGE_ROOT/modulefiles

* M odulefile help items
These following are caerted toproc ModulesHelp ~ andmodule-whatis |, respectiely:

MODULE_WHATIS whatis string (should be one line) — requirdtithis value is missing, the mod-
ulefile creation will be skipped.

MODULE_HELP Help text, may be seral lines.

* M odulefile contents
These are placed verbatim into the modulefile (leading spaces are stripped):

MODULE_DEP Zero or moreconflict foo or prereq foo
MODULE_CORE The bulk part of the modulefilprepend PATH etc.
MODULE_AUX Package-specific auxiliary definitions.

The staging functions lia access to all of these variables.
Automatisms

1. NAMEandVERSIONare actually optional and are guessed from the package directory if it is named in
the customary forrmame—-x.y.z Directories of the forrmame—x[.y[.z]][-more] are also recognized.

2. If MODULE_CORE left empty it is guessedased on the existence of subdirs foun&pnefix/
afterstage install. A complete such guess is e¢alént to the following:

embody-1.0.4 2012-12-13 3

EMBODY(1) Ernvironment Modules EMBODY(1)

MODULE_CORE="

prepend-path PATH \$prefix/bin
prepend-path MANPATH \$prefix/man
prepend-path MANPATH \$prefix/share/man

prepend-path
prepend-path

PYTHON_PATH
PYTHON_PATH

\$prefix/lib/python
\$prefix/lib64/python

prepend-path LD_LIBRARY_PATH \$prefix/lib
prepend-path LD_LIBRARY_PATH \$prefix/lib64
prepend-path INCLUDE \$prefix/include

3. For corvenience, an environment variabt®lAME>_ HOMIE automatically added:
setenv <NAME> HOME $prefix

This is a customary installation requirement for gnpackages, and alsowgs wsers a uniform names-
pace to access the astipackage, e.g$FOO_HOME/share/ . <NAME>is the uppercased value of
$NAME with - replaced by .

OPTIONS
Stage selection

The following options select one or mastging functions Without an eplicit selection, most staging
functions are xecuted in the order skam in the table abee, subject to the conditions noted. The output fo
each stage function is logged underbody logdir /name.log.

——download Download source files into a local cachidas effect only if the user defined a
stage_download function (no dedult). Thereis no short option because | ran
out of covenient letters.

Recommendations:

* Put downloads into a directory aim® the version-specific current arking
directory such as ../dist . This will\aid re-downloads and simplifies cleanup
operations.

* Define variables in the preamableEMBODYto refer to the downloaded files
in stage_download and stage_extract.

-z, ——zap Remae urce files, i.e., clean theorking directory Has effect only if the user
defined astage_zap function (no default).

—X, ——extract Unpack source files; implies—zap. Has effect only if the user defined a

stage_extract function (no default).

—u, ——uninstall

—d, ——distclean

—P, =—prep
-b, ——build
—i, ——install
—-a, ——aux

—m, ——module

-1, ——test

embody-1.0.4

Uninstall the package and remsoits modulefile; implies-—remove (see below).
Perform distclean stage; defauttake distclean or setup.py clean
Perform prep stage; defaultconfigure , NOPfor setup.py
Perform build stage; defauthake or setup.py build

Install; defaultmake install or setup.py install

Install auxiliary files; no default.

Experimental: Prior to the actual call $tege install_aux the currentEMBODY
script will be presemd in $prefix/ as.EMBODY and the build directory will
be symlinked assrc

Install the modulefile.

Perform a test; datilt: make check or make test (depending on Madile);
test.py for python. Priorto runningstage test the nev modulefile will be
loaded.

2012-12-13 4

EMBODY(1) Ernvironment Modules EMBODY(1)

—c, ——clean Perform cleanup; defaultnake clean or setup.py clean

-X,-U,-D, =P -B, -, -A, -M, -T
Perform the stages in the usual ordprtothe gven sage. Infact, -T is equv-
alent to the default sequence.

Modulefile management

-e, ——edit Edit the modulefile.

-, —list List installed module ersions and shw the contents ofversion if it exists.
Option—-v gives more details.

-r, ——remove Remae the .versionfile, thereby making the Xé&cographically latest modulefile
the default module. (Note that this can produce incorrect behavior whensianv
number component changes from .9 to .10 .)

With —-force, dso remae the modulefile corresponding to the current
NAME/VERSION-BUILDtriple.

-s, ——show Construct and shothe modulefile, but do not install.

Control

-1,-2,-3, ... (ary numeric option) Limit a multi-bild to just the corresponding line(s) from
$BUILD_MULTI (see MULTI-BUILDS below).

—-n, ——no-run dry—run — donot actually run the staging functions.

—f, —force Remae various safeguards and permit running as root.

-w, ——wipe Wipe embody log directories (all builds).

General options

-h, ——help Shaw option summary.

—(, ——quiet Suppress trace output (test output is still shown).

-V, ——verbose Generate verbose output; may be repeated to get increased verbosity.
—-version Print libembody version number.

——debug Generate debugging output.

Available options

EMBODYis normally a shell script and may process its own optigksy options not consumed will be
interpreted bylibembody Without requiring the use of-, a few dphabet slots arevailable: —g, —j, -k,
-0, -y. See <http://www.fags.org/docs/artu/ch10s05.html> for customary meanings.

MULTI-BUILDS
A BUILD_MULTI variable specified irEMBODY results in seeral closely related dilds. Theformat is
multi-line (requiring enclosing single or double quotes), as follows:

comment
buildtagl varl=value var2=value ...
buildtag2 varl=value var2=value ...

Each line defines a value fBUILD and seeral associatedariables. EMBODYwill be called recursiely
once for each line. During each cBUILD will be set to its respeet buildtag and all associatedavi-
ables will hae teir respectie values. Emptylines and ‘#-style comments iBUILD_MULTI are
ignored. Settingn explicit value foBUILD will preempta multi-build.

embody-1.0.4 2012-12-13 5

EMBODY(1) Ernvironment Modules EMBODY(1)

VARIABLES
In addition to awp variables defined iIWEMBODY, the following \ariables are \&ilable to staging func-
tions:

BUILD (during multi-builds)
Will be set to eachuildtag in turn.

package_build = $VERSION-$BUILD
Unique indentifier of the current build; automatically added to the modulefile asafiable ver-
sion .

package_name = $NAME-$package_build
Fully qualified package name.

prefix = SPACKAGE_ROOT/$package_name
Installation destination directory; automatically added to the modulefile as Tcl varable

embody_logdir = embody-$package_build
Workdir for current build logs.

embody _testdir = test-embody-$package_build
Name of a build-specific test directory.

This is intended to keep a nagitest directory pristine across subsequent builds, shouldrthiee
distclean step be ignorant of itThe directory will be created cleanly for each build; it is up to the
user to populate this directory istage test After stage test the directory will be meed to
$embody_logdir/test . The directory is created initially in the top&t source directory because
some test procedures use refatiths in constructs likel../include

module_name = $NAME/$package_build
Full module name with version, refers to a file urBlIODULE_ROOT

module_dir = $MODULE_ROOT/$NAME
Pah to modulefile without version.

force ,verbose , quiet
These variables are non-empty when the corresponding options were specified. Useful for condition-
als in user-defined staging functions.

FILES
$EMBODY_HOME/bin/libembody
The Embody library.

<package_name>/EMBODY
User-generateBmbody script.

$EMBODY_HOME/share/doc
Documentation and example files.

BUGS
Options must be gen individually (cannot be clustered). This shouldmirt too much unless you're run-
ning EMBODYover and over.

Dry-run mode does not stvactions inside staging functions.

SEE ALSO
module(1), modulefilg5), bash(1), rpm(8), rpmbuild(8)

<http://trac.anl.gov/embody/>

AUTHOR
Michael Sternberg, Center for Nanoscale Materials at Argonne National Laboratory.

COPYRIGHT
Copyright (C) 2009, UChicago Argonnd,C; All Rights Reserved.

embody-1.0.4 2012-12-13 6

EMBODY(1) Ernvironment Modules EMBODY(1)

OPEN SOURCE LICENSE
Redistritution and use in source and binary forms, with or without modification, are permittedeato
that the following conditions are met:

1. Redistrilutions of source code must retain theabopyright notice, this list of conditions and the
following disclaimer Software changes, modifications, or detive works, should be noted with
comments and the author andarization’s nrame.

2. Redistrilntions in binary form must reproduce the edaopyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neitherthe names of UChicago gonne,LLC or the Department of Energy nor the names of its con-
tributors may be used to endorse or promote productgeddrom this software without specific prior
written permission.

4. Thesoftware and the end-user documentation included with the redistributiory, fihast include the
following acknowledgment:

“This product includes software produced by UChicag@oAne, LLC under Contract No.
DE-AC02-06CH1135With the Department of Energy

DISCLAIMER
THE SOFTWARE IS SUPPLIEDAS IS"” WITHOUT WARRANTY OF ANY KIND.

Neither the United StateSOVERNMENT, nor the United States Department of EnemOR UChicago
Argonne,LLC, nor ary of their employees, makesyawarranty express or implied, or assumesydegd
liability or responsibility for the accurgccompleteness, or usefulness offanformation, data, apparatus,
product, or process disclosed, or represents that its use would not infriveselpiowned rights.

embody-1.0.4 2012-12-13 7

